Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C62

Direct product G=NxQ with N=C2xC4 and Q=C62
dρLabelID
C22xC6xC12288C2^2xC6xC12288,1018

Semidirect products G=N:Q with N=C2xC4 and Q=C62
extensionφ:Q→Aut NdρLabelID
(C2xC4):1C62 = C32xC22wrC2φ: C62/C32C22 ⊆ Aut C2xC472(C2xC4):1C6^2288,817
(C2xC4):2C62 = C32x2+ 1+4φ: C62/C32C22 ⊆ Aut C2xC472(C2xC4):2C6^2288,1022
(C2xC4):3C62 = C22:C4xC3xC6φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4):3C6^2288,812
(C2xC4):4C62 = D4xC62φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4):4C6^2288,1019
(C2xC4):5C62 = C4oD4xC3xC6φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4):5C6^2288,1021

Non-split extensions G=N.Q with N=C2xC4 and Q=C62
extensionφ:Q→Aut NdρLabelID
(C2xC4).1C62 = C32xC4.D4φ: C62/C32C22 ⊆ Aut C2xC472(C2xC4).1C6^2288,318
(C2xC4).2C62 = C32xC4.10D4φ: C62/C32C22 ⊆ Aut C2xC4144(C2xC4).2C6^2288,319
(C2xC4).3C62 = C32xC4:D4φ: C62/C32C22 ⊆ Aut C2xC4144(C2xC4).3C6^2288,818
(C2xC4).4C62 = C32xC22:Q8φ: C62/C32C22 ⊆ Aut C2xC4144(C2xC4).4C6^2288,819
(C2xC4).5C62 = C32xC22.D4φ: C62/C32C22 ⊆ Aut C2xC4144(C2xC4).5C6^2288,820
(C2xC4).6C62 = C32xC8:C22φ: C62/C32C22 ⊆ Aut C2xC472(C2xC4).6C6^2288,833
(C2xC4).7C62 = C32xC8.C22φ: C62/C32C22 ⊆ Aut C2xC4144(C2xC4).7C6^2288,834
(C2xC4).8C62 = C32x2- 1+4φ: C62/C32C22 ⊆ Aut C2xC4144(C2xC4).8C6^2288,1023
(C2xC4).9C62 = C4:C4xC3xC6φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).9C6^2288,813
(C2xC4).10C62 = C32xC42:C2φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).10C6^2288,814
(C2xC4).11C62 = C32xC4.4D4φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).11C6^2288,821
(C2xC4).12C62 = C32xC42.C2φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).12C6^2288,822
(C2xC4).13C62 = C32xC42:2C2φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).13C6^2288,823
(C2xC4).14C62 = C32xD4:C4φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).14C6^2288,320
(C2xC4).15C62 = C32xQ8:C4φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).15C6^2288,321
(C2xC4).16C62 = C32xC4wrC2φ: C62/C3xC6C2 ⊆ Aut C2xC472(C2xC4).16C6^2288,322
(C2xC4).17C62 = C32xC4.Q8φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).17C6^2288,324
(C2xC4).18C62 = C32xC2.D8φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).18C6^2288,325
(C2xC4).19C62 = C32xC8.C4φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).19C6^2288,326
(C2xC4).20C62 = D4xC3xC12φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).20C6^2288,815
(C2xC4).21C62 = Q8xC3xC12φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).21C6^2288,816
(C2xC4).22C62 = C32xC4:1D4φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).22C6^2288,824
(C2xC4).23C62 = C32xC4:Q8φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).23C6^2288,825
(C2xC4).24C62 = C32xC8oD4φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).24C6^2288,828
(C2xC4).25C62 = D8xC3xC6φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).25C6^2288,829
(C2xC4).26C62 = SD16xC3xC6φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).26C6^2288,830
(C2xC4).27C62 = Q16xC3xC6φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).27C6^2288,831
(C2xC4).28C62 = C32xC4oD8φ: C62/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).28C6^2288,832
(C2xC4).29C62 = Q8xC62φ: C62/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).29C6^2288,1020
(C2xC4).30C62 = C32xC8:C4central extension (φ=1)288(C2xC4).30C6^2288,315
(C2xC4).31C62 = C32xC22:C8central extension (φ=1)144(C2xC4).31C6^2288,316
(C2xC4).32C62 = C32xC4:C8central extension (φ=1)288(C2xC4).32C6^2288,323
(C2xC4).33C62 = M4(2)xC3xC6central extension (φ=1)144(C2xC4).33C6^2288,827

׿
x
:
Z
F
o
wr
Q
<